Telegram Web
This media is not supported in your browser
VIEW IN TELEGRAM
๐‹๐จ๐ ๐ข๐ฌ๐ญ๐ข๐œ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ ๐ฌ๐ข๐ฆ๐ฉ๐ฅ๐ฒ

If youโ€™ve just started learning Machine Learning, ๐‹๐จ๐ ๐ข๐ฌ๐ญ๐ข๐œ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง is one of the most important and misunderstood algorithms.

Hereโ€™s everything you need to know ๐Ÿ‘‡

๐Ÿ โ‡จ ๐–๐ก๐š๐ญ ๐ข๐ฌ ๐‹๐จ๐ ๐ข๐ฌ๐ญ๐ข๐œ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง?

Itโ€™s a supervised ML algorithm used to predict probabilities and classify data into binary outcomes (like 0 or 1, Yes or No, Spam or Not Spam).

๐Ÿ โ‡จ ๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ?

It starts like Linear Regression, but instead of outputting continuous values, it passes the result through a ๐ฌ๐ข๐ ๐ฆ๐จ๐ข๐ ๐Ÿ๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง to map the result between 0 and 1.

๐˜—๐˜ณ๐˜ฐ๐˜ฃ๐˜ข๐˜ฃ๐˜ช๐˜ญ๐˜ช๐˜ต๐˜บ = ๐Ÿ / (๐Ÿ + ๐žโป(๐ฐ๐ฑ + ๐›))

Here,
๐ฐ = weights
๐ฑ = inputs
๐› = bias
๐ž = Eulerโ€™s number (approx. 2.718)

๐Ÿ‘ โ‡จ ๐–๐ก๐ฒ ๐ง๐จ๐ญ ๐‹๐ข๐ง๐ž๐š๐ซ ๐‘๐ž๐ ๐ซ๐ž๐ฌ๐ฌ๐ข๐จ๐ง?

Because Linear Regression predicts any number from -โˆž to +โˆž, which doesnโ€™t make sense for probability.
We need outputs between 0 and 1 and thatโ€™s where the sigmoid function helps.

๐Ÿ’ โ‡จ ๐‹๐จ๐ฌ๐ฌ ๐…๐ฎ๐ง๐œ๐ญ๐ข๐จ๐ง ๐ฎ๐ฌ๐ž๐?

๐๐ข๐ง๐š๐ซ๐ฒ ๐‚๐ซ๐จ๐ฌ๐ฌ-๐„๐ง๐ญ๐ซ๐จ๐ฉ๐ฒ

โ„’ = โˆ’(y log(p) + (1 โˆ’ y) log(1 โˆ’ p))
Where y is the actual value (0 or 1), and p is the predicted probability

๐Ÿ“ โ‡จ ๐€๐ฉ๐ฉ๐ฅ๐ข๐œ๐š๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง ๐ซ๐ž๐š๐ฅ ๐ฅ๐ข๐Ÿ๐ž:

๐„๐ฆ๐š๐ข๐ฅ ๐’๐ฉ๐š๐ฆ ๐ƒ๐ž๐ญ๐ž๐œ๐ญ๐ข๐จ๐ง
๐ƒ๐ข๐ฌ๐ž๐š๐ฌ๐ž ๐๐ซ๐ž๐๐ข๐œ๐ญ๐ข๐จ๐ง
๐‚๐ฎ๐ฌ๐ญ๐จ๐ฆ๐ž๐ซ ๐‚๐ก๐ฎ๐ซ๐ง ๐๐ซ๐ž๐๐ข๐œ๐ญ๐ข๐จ๐ง
๐‚๐ฅ๐ข๐œ๐ค-๐“๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐‘๐š๐ญ๐ž ๐๐ซ๐ž๐๐ข๐œ๐ญ๐ข๐จ๐ง
๐๐ข๐ง๐š๐ซ๐ฒ ๐ฌ๐ž๐ง๐ญ๐ข๐ฆ๐ž๐ง๐ญ ๐œ๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง

๐Ÿ” โ‡จ ๐•๐ฌ. ๐Ž๐ญ๐ก๐ž๐ซ ๐‚๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐ž๐ซ๐ฌ

Itโ€™s fast, interpretable, and easy to implement, but it struggles with non-linearly separable data unlike Decision Trees or SVMs.

๐Ÿ• โ‡จ ๐‚๐š๐ง ๐ข๐ญ ๐ก๐š๐ง๐๐ฅ๐ž ๐ฆ๐ฎ๐ฅ๐ญ๐ข๐ฉ๐ฅ๐ž ๐œ๐ฅ๐š๐ฌ๐ฌ๐ž๐ฌ?

Yes, using One-vs-Rest (OvR) or Softmax in Multinomial Logistic Regression.

๐Ÿ– โ‡จ ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐ข๐ง ๐๐ฒ๐ญ๐ก๐จ๐ง

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
pred = model.predict(X_test)


#LogisticRegression #MachineLearning #MLAlgorithms #SupervisedLearning #BinaryClassification #SigmoidFunction #PythonML #ScikitLearn #MLForBeginners #DataScienceBasics #MLExplained #ClassificationModels #AIApplications #PredictiveModeling #MLRoadmap

โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค8๐Ÿ”ฅ2
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘4โค1
ds full archive.pdf.pdf
55.2 MB
Best Data Science Archive Notes

โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค2๐Ÿ‘1
๐Ÿ๐Ÿ“ฐ Linear Algebra in Python: Matrix Inverses and Least Squares โ€” https://realpython.com/python-linear-algebra/

#PythonProgramming #python

โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘2
This channels is for Programmers, Coders, Software Engineers.

0๏ธโƒฃ Python
1๏ธโƒฃ Data Science
2๏ธโƒฃ Machine Learning
3๏ธโƒฃ Data Visualization
4๏ธโƒฃ Artificial Intelligence
5๏ธโƒฃ Data Analysis
6๏ธโƒฃ Statistics
7๏ธโƒฃ Deep Learning
8๏ธโƒฃ programming Languages

โœ… https://www.tgoop.com/addlist/8_rRW2scgfRhOTc0

โœ… https://www.tgoop.com/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐Ÿ‘1
Top 50 LLM Interview Questions!

A comprehensive resource that covers traditional ML basics, model architectures, real-world case studies, and theoretical foundations.

๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡

โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1๐Ÿ‘1
Data Science Machine Learning Data Analysis Books pinned ยซIntent | AI-Enhanced Telegram ๐ŸŒ Supports real-time translation in 86 languages ๐Ÿ’ฌ Simply swipe up during chat to let AI automatically generate contextual replies ๐ŸŽ™ Instant AI enhanced voice-to-text conversion ๐Ÿง  Built-in mainstream models including GPT-4o, Claudeโ€ฆยป
๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ_๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป_๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ_๐—ณ๐—ผ๐—ฟ_๐— ๐—”๐—”๐—ก๐—š_&_๐—•๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ.pdf
12.5 MB
๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐—ณ๐—ผ๐—ฟ ๐— ๐—”๐—”๐—ก๐—š & ๐—•๐—ฒ๐˜†๐—ผ๐—ป๐—ฑ ๐Ÿš€
If you're targeting top product companies or leveling up your backend/system design skills, this is for you.

System Design is no longer optional in tech interviews. Itโ€™s a must-have.
From Netflix, Amazon, Uber, YouTube, Reddit, Inc., to Twitter, these case studies and topic breakdowns will help you build real-world architectural thinking.

๐Ÿ“Œ Save this post. Spend 40 mins/day. Stay consistent.


โžŠ ๐— ๐˜‚๐˜€๐˜-๐—ž๐—ป๐—ผ๐˜„ ๐—–๐—ผ๐—ฟ๐—ฒ ๐—–๐—ผ๐—ป๐—ฐ๐—ฒ๐—ฝ๐˜๐˜€

๐Ÿ‘‰ System Design Basics
๐Ÿ”— https://bit.ly/3SuUR0Y)

๐Ÿ‘‰ Horizontal & Vertical Scaling
๐Ÿ”— https://bit.ly/3slq5xh)

๐Ÿ‘‰ Load Balancing & Message Queues
๐Ÿ”— https://bit.ly/3sp0FP4)

๐Ÿ‘‰ HLD vs LLD, Hashing, Monolith vs Microservices
๐Ÿ”— https://bit.ly/3DnEfEm)

๐Ÿ‘‰ Caching, Indexing, Proxies
๐Ÿ”— https://bit.ly/3SvyVDc)

๐Ÿ‘‰ Networking, CDN, How Browsers Work
๐Ÿ”— https://bit.ly/3TOHQRb

๐Ÿ‘‰ DB Sharding, CAP Theorem, Schema Design
๐Ÿ”— https://bit.ly/3CZtfLN

๐Ÿ‘‰ Concurrency, OOP, API Layering
๐Ÿ”— https://bit.ly/3sqQrhj

๐Ÿ‘‰ Estimation, Performance Optimization
๐Ÿ”— https://bit.ly/3z9dSPN

๐Ÿ‘‰ MapReduce, Design Patterns
๐Ÿ”— https://bit.ly/3zcsfmv

๐Ÿ‘‰ SQL vs NoSQL, Cloud Architecture
๐Ÿ”— https://bit.ly/3z8Aa49)


โž‹ ๐— ๐—ผ๐˜€๐˜ ๐—”๐˜€๐—ธ๐—ฒ๐—ฑ ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€

๐Ÿ”— https://bit.ly/3Dp40Ux
๐Ÿ”— https://bit.ly/3E9oH7K


โžŒ ๐—–๐—ฎ๐˜€๐—ฒ ๐—ฆ๐˜๐˜‚๐—ฑ๐˜† ๐——๐—ฒ๐—ฒ๐—ฝ ๐——๐—ถ๐˜ƒ๐—ฒ๐˜€ (๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ!)

๐Ÿ‘‰ Design Netflix
๐Ÿ”— https://bit.ly/3GrAUG1

๐Ÿ‘‰ Design Reddit
๐Ÿ”— https://bit.ly/3OgGJrL

๐Ÿ‘‰ Design Messenger
๐Ÿ”— https://bit.ly/3DoAAXi

๐Ÿ‘‰ Design Instagram
๐Ÿ”— https://bit.ly/3BFeHlh

๐Ÿ‘‰ Design Dropbox
๐Ÿ”— https://bit.ly/3SnhncU

๐Ÿ‘‰ Design YouTube
๐Ÿ”— https://bit.ly/3dFyvvy

๐Ÿ‘‰ Design Tinder
๐Ÿ”— https://bit.ly/3Mcyj3X

๐Ÿ‘‰ Design Yelp
๐Ÿ”— https://bit.ly/3E7IgO5

๐Ÿ‘‰ Design WhatsApp
๐Ÿ”— https://bit.ly/3M2GOhP

๐Ÿ‘‰ Design URL Shortener
๐Ÿ”— https://bit.ly/3xP078x

๐Ÿ‘‰ Design Amazon Prime Video
๐Ÿ”—https://bit.ly/3hVpWP4

๐Ÿ‘‰ Design Twitter
๐Ÿ”— https://bit.ly/3qIG9Ih

๐Ÿ‘‰ Design Uber
๐Ÿ”— https://bit.ly/3fyvnlT

๐Ÿ‘‰ Design TikTok
๐Ÿ”— https://bit.ly/3UUlKxP

๐Ÿ‘‰ Design Facebook Newsfeed
๐Ÿ”— https://bit.ly/3RldaW7

๐Ÿ‘‰ Design Web Crawler
๐Ÿ”— https://bit.ly/3DPZTBB

๐Ÿ‘‰ Design API Rate Limiter
๐Ÿ”— https://bit.ly/3BIVuh7


โž ๐—™๐—ถ๐—ป๐—ฎ๐—น ๐—ฆ๐˜†๐˜€๐˜๐—ฒ๐—บ ๐——๐—ฒ๐˜€๐—ถ๐—ด๐—ป ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€

๐Ÿ‘‰ All Solved Case Studies
๐Ÿ”— https://bit.ly/3dCG1rc

๐Ÿ‘‰ Design Terms & Terminology
๐Ÿ”— https://bit.ly/3Om9d3H

๐Ÿ‘‰ Complete Basics Series
๐Ÿ”—https://bit.ly/3rG1cfr

#SystemDesign #TechInterviews #MAANGPrep #BackendEngineering #ScalableSystems #HLD #LLD #SoftwareArchitecture #DesignCaseStudies #CloudArchitecture #DataEngineering #DesignPatterns #LoadBalancing #Microservices #DistributedSystems


โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘3โค1๐Ÿ”ฅ1
๐Ÿ™๐Ÿ’ธ 500$ FOR THE FIRST 500 WHO JOIN THE CHANNEL! ๐Ÿ™๐Ÿ’ธ

Join our channel today for free! Tomorrow it will cost 500$!

https://www.tgoop.com/+Cl8uwGkD0l5lMGNl

You can join at this link! ๐Ÿ‘†๐Ÿ‘‡

https://www.tgoop.com/+Cl8uwGkD0l5lMGNl
โค2๐Ÿ‘1
mcp guide.pdf.pdf
16.7 MB
A comprehensive PDF has been compiled that includes all MCP-related posts shared over the past six months.

(75 pages, 10+ projects & visual explainers)

Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:

* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers

Projects included:

1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit

#MCP #ModularComputationProtocol #AIProjects #DeepLearning #ArtificialIntelligence #RAG #VoiceAI #SyntheticData #AIAgents #AIResearch #TechWriting #OpenSourceAI #AI #python

โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐Ÿ‘1
10 GitHub repos to build a career in AI engineering:

(100% free step-by-step roadmap)

1๏ธโƒฃ ML for Beginners by Microsoft

A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.

Includes quizzes, lessons, and hands-on projects, with some videos.

GitHub repo โ†’ https://lnkd.in/dCxStbYv

2๏ธโƒฃ AI for Beginners by Microsoft

This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.

Beginner-friendly, project-based, and full of real-world apps.

GitHub repo โ†’ https://lnkd.in/dwS5Jk9E

3๏ธโƒฃ Neural Networks: Zero to Hero

Now that youโ€™ve grasped the foundations of AI/ML, itโ€™s time to dive deeper.

This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.

GitHub repo โ†’ https://lnkd.in/dXAQWucq

4๏ธโƒฃ DL Paper Implementations

So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.

This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.

GitHub repo โ†’ https://lnkd.in/dTrtDrvs

5๏ธโƒฃ Made With ML

Now itโ€™s time to learn how to go from notebooks to production.

Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.

GitHub repo โ†’ https://lnkd.in/dYyjjBGb

6๏ธโƒฃ Hands-on LLMs

- You've built neural nets.
- You've explored GPTs and LLMs.

Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.

GitHub repo โ†’ https://lnkd.in/dh2FwYFe

7๏ธโƒฃ Advanced RAG Techniques

Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.

This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.

GitHub repo โ†’ https://lnkd.in/dBKxtX-D

8๏ธโƒฃ AI Agents for Beginners by Microsoft

After diving into LLMs and mastering RAG, learn how to build AI agents.

This hands-on course covers building AI agents using frameworks like AutoGen.

GitHub repo โ†’ https://lnkd.in/dbFeuznE

9๏ธโƒฃ Agents Towards Production

The above course will teach what AI agents are. Next, learn how to ship them.

This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.

GitHub repo โ†’ https://lnkd.in/dcwmamSb

๐Ÿ”Ÿ AI Engg. Hub

To truly master LLMs, RAG, and AI agents, you need projects.

This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.

GitHub repo โ†’ https://lnkd.in/geMYm3b6

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3
This media is not supported in your browser
VIEW IN TELEGRAM
Over the last year, several articles have been written to help candidates prepare for data science technical interviews. These resources cover a wide range of topics including machine learning, SQL, programming, statistics, and probability.

1๏ธโƒฃ Machine Learning (ML) Interview
Types of ML Q&A in Data Science Interview
https://shorturl.at/syN37

ML Interview Q&A for Data Scientists
https://shorturl.at/HVWY0

Crack the ML Coding Q&A
https://shorturl.at/CDW08

Deep Learning Interview Q&A
https://shorturl.at/lHPZ6

Top LLMs Interview Q&A
https://shorturl.at/wGRSZ

Top CV Interview Q&A [Part 1]
https://rb.gy/51jcfi

Part 2
https://rb.gy/hqgkbg

Part 3
https://rb.gy/5z87be

2๏ธโƒฃ SQL Interview Preparation
13 SQL Statements for 90% of Data Science Tasks
https://rb.gy/dkdcl1

SQL Window Functions: Simplifying Complex Queries
https://t.ly/EwSlH

Ace the SQL Questions in the Technical Interview
https://lnkd.in/gNQbYMX9

Unlocking the Power of SQL: How to Ace Top N Problem Questions
https://lnkd.in/gvxVwb9n

How To Ace the SQL Ratio Problems
https://lnkd.in/g6JQqPNA

Cracking the SQL Window Function Coding Questions
https://lnkd.in/gk5u6hnE

SQL & Database Interview Q&A
https://lnkd.in/g75DsEfw

6 Free Resources for SQL Interview Preparation
https://lnkd.in/ghhiG79Q

3๏ธโƒฃ Programming Questions
Foundations of Data Structures [Part 1]
https://lnkd.in/gX_ZcmRq

Part 2
https://lnkd.in/gATY4rTT

Top Important Python Questions [Conceptual]
https://lnkd.in/gJKaNww5

Top Important Python Questions [Data Cleaning and Preprocessing]
https://lnkd.in/g-pZBs3A

Top Important Python Questions [Machine & Deep Learning]
https://lnkd.in/gZwcceWN

Python Interview Q&A
https://lnkd.in/gcaXc_JE

5 Python Tips for Acing DS Coding Interview
https://lnkd.in/gsj_Hddd

4๏ธโƒฃ Statistics
Mastering 5 Statistics Concepts to Boost Success
https://lnkd.in/gxEuHiG5

Mastering Hypothesis Testing for Interviews
https://lnkd.in/gSBbbmF8

Introduction to A/B Testing
https://lnkd.in/g35Jihw6

Statistics Interview Q&A for Data Scientists
https://lnkd.in/geHCCt6Q

5๏ธโƒฃ Probability
15 Probability Concepts to Review [Part 1]
https://lnkd.in/g2rK2tQk

Part 2
https://lnkd.in/gQhXnKwJ

Probability Interview Q&A [Conceptual Questions]
https://lnkd.in/g5jyKqsp

Probability Interview Q&A [Mathematical Questions]
https://lnkd.in/gcWvPhVj

๐Ÿ”œ All links are available in the GitHub repository:
https://lnkd.in/djcgcKRT

#DataScience #InterviewPrep #MachineLearning #SQL #Python #Statistics #Probability #CodingInterview #AIBootcamp #DeepLearning #LLMs #ComputerVision #GitHubResources #CareerInDataScience


โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค5
Transformer models have proven highly effective for many NLP tasks. While scaling up with larger dimensions and more layers can increase their power, this also significantly increases computational complexity. Mixture of Experts (MoE) architecture offers an elegant solution by introducing sparsity, allowing models to scale efficiently without proportional computational cost increases.

In this post, you will learn about Mixture of Experts architecture in transformer models. In particular, you will learn about:

Why MoE architecture is needed for efficient transformer scaling
How MoE works and its key components
How to implement MoE in transformer models

Letโ€™s get started:
https://machinelearningmastery.com/mixture-of-experts-architecture-in-transformer-models/

โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4
Auto-Encoder & Backpropagation by hand โœ๏ธ lecture video ~ ๐Ÿ“บ https://byhand.ai/cv/10

It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.

= Chapters =
โ€ข Encoder & Decoder (00:00)
โ€ข Equation (10:09)
โ€ข 4-2-4 AutoEncoder (16:38)
โ€ข 6-4-2-4-6 AutoEncoder (18:39)
โ€ข L2 Loss (20:49)
โ€ข L2 Loss Gradient (27:31)
โ€ข Backpropagation (30:12)
โ€ข Implement Backpropagation (39:00)
โ€ข Gradient Descent (44:30)
โ€ข Summary (51:39)

#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers


โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3
If you are doing regression modeling in Python for explanatory purposes, don't use scikit-learn - it's not set up for explanatory modeling. Use #statsmodels. It's set up much better for immediately showing you all the underlying parameters of your model and helping you interpret your results..

#analytics #peopleanalytics #datascience #rstats #python

โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค6๐Ÿ‘2
Please open Telegram to view this post
VIEW IN TELEGRAM
โค1
Mathematical Theory of Deep Learning.pdf
7.8 MB
Unlock the Secrets of #DeepLearning with Math!
Excited to share a free resource for all data science enthusiasts! "Mathematical Theory of Deep Learning" by Philipp Petersen and Jakob Zech is now available on #arXiv.

This book breaks down the core pillars of deep learning with rigorous yet accessible #math. Perfect for grad students, researchers, or anyone curious about why neural networks work so well!

Key Takeaways:
Mastering feedforward neural networks and ReLU's expressive power
Exploring gradient descent, backpropagation, and the loss landscape
Unraveling generalization, double descent, and adversarial robustness.

โœ‰๏ธ Our Telegram channels: https://www.tgoop.com/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค4๐Ÿ‘4
๐Ÿ”ฅ The coolest AI bot on Telegram

๐Ÿ’ข Completely free and knows everything, from simple questions to complex problems.

โ˜•๏ธ Helps you with anything in the easiest and fastest way possible.

โ™จ๏ธ You can even choose girlfriend or boyfriend mode and chat as if youโ€™re talking to a real person ๐Ÿ˜‹

๐Ÿ’ต Includes weekly and monthly airdrops!โ—๏ธ

๐Ÿ˜ตโ€๐Ÿ’ซ Bot ID: @chatgpt_officialbot

๐Ÿ’Ž The best part is, even group admins can use it right inside their groups! โœจ

๐Ÿ“บ Try now:

โ€ข Type FunFact! for a jaw-dropping AI trivia.
โ€ข Type RecipePlease! for a quick, tasty meal idea.
โ€ข Type JokeTime! for an instant laugh.

Or just say Surprise me! and I'll pick something awesome for you. ๐Ÿค–โœจ
2025/07/08 15:19:45
Back to Top
HTML Embed Code: